

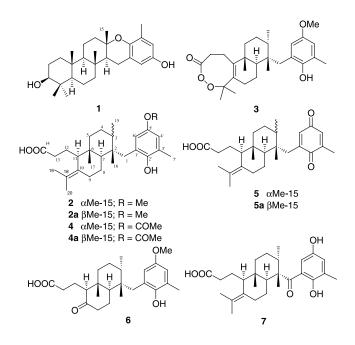
Tetrahedron 59 (2003) 2059-2062

TETRAHEDRON

On the relative stereochemistry of atomaric acid and related compounds

Enrique Dorta, Ana R. Díaz-Marrero, Mercedes Cueto* and José Darias

Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico F. Sánchez, 3, Apdo. 195, 38206 La Laguna, Tenerife, Spain


Received 19 December 2002; revised 7 February 2003; accepted 7 February 2003

Abstract—The stereochemistry at C-3 of the known compounds atomaric acid 2a, 5'a-desmethyl-5'-acetylatomaric acid 4a, and stypoquinonic acid 5a is revised to 2, 4, and 5 on the basis of a careful study of 2D NOESY experiments and also from comparison of their ¹H and ¹³C chemical shifts with those of the related metabolites 6 and 7 isolated from *Stypopodium zonale*. Compound 7 is a novel unusually functionalized 1-keto-5'a-desmethyl atomaric acid derivative whose structure and stereochemistry were determined by spectroscopic means. © 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Over 30 years ago a unique side-chain cyclized tocopherollike derivative, taondiol **1**, was isolated^{1–2} from the brown alga *Taonia atomaria* and a β stereochemistry was assigned to the methyl group of the chromane ring moiety. In 1974 the related compound atomaric acid **2a**, isolated from the same alga but collected at a different location, was described and, by correlation with taondiol, a β stereochemistry for the respective Me-15 was proposed.³ In 1984, the X-ray diffraction analysis of atomaric acid-related compound **3** indicated that the corresponding C-15 methyl group possesses an α stereochemistry.⁴ In view of this finding, and also based on biogenetic considerations,⁵ it was proposed that the Me-15 β stereochemistry of **2a** should be modified to Me-15 α , although neither of these works included additional spectroscopic data for atomaric acid to support that proposal.

Soon afterwards, 5'a-desmethyl-5'-acetylatomaric acid **4a**,⁶ and later, in 1999, stypoquinonic acid **5a**,⁷ both isolated from *Stypopodium zonale*, were reported to have a Me-15 β stereochemistry. Moreover, we recently described⁸ the isolation and structure determination of three new atomaric acid-related metabolites (for example **6**) from the same source, for which we proposed a Me-15 α stereochemistry. In view of the above-mentioned considerations, and also because of the co-existence in *S. zonale* of a number of compounds related to atomaric acid but with an uncertain Me-15 stereochemistry, doubts with regard to the true C-3 stereochemistry are justified.

From a new study of this alga we have isolated an unusually functionalized 1-keto-5'a-desmethyl atomaric acid derivative 7 together with atomaric acid 2, 5'a-desmethyl-5'acetylatomaric acid 4, and stypoquinonic acid 5. In this paper we provide evidence supporting the fact that atomaric acid, 5'a-desmethyl-5'-acetylatomaric acid, and stypoquinonic acid possess a Me-15 group with an α stereochemistry, which is opposite to that previously assigned for these compounds, and thus the structure for these compounds should be 2, 4 and 5, respectively. The spectroscopical characterization has also shown that the novel

Keywords: atomaric acid; Stypopodium zonale; diterpenes of mixed biogenesis.

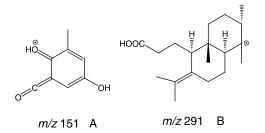
^{*} Corresponding author. Tel.: +34-922-252144; fax: +34-922-260135; e-mail: mcueto@ipna.csic.es

metabolite 7 possesses the related secondary methyl group with an α disposition.

2. Results and discussion

From *S. zonale* (L.) Lamouroux (Dyctiotaceae) collected in the Macaronesian region the new compound **7** was obtained from a flash chromatography on Si gel of the crude extract eluted with hexane–EtOAc (1:1), after gel filtration followed by purification by HPLC. These compounds, **2**, **4**, **5** and **7** together with structurally related peroxylactones,⁵ such as **3**, include all the naturally occurring metabolites based on the atomaric acid skeleton.

With the aim of visualizing with clarity the ¹H and ¹³C NMR chemical shifts for comparative purposes, in relation with the respective Me-15 stereochemistry, the spectroscopical data of 2, 4, 5 and of the recently reported compound 6, are also included in Table 1 as well as those of the novel compound 7.


Compound 7 was isolated as a yellow oil. The EIMS spectrum showed a peak at m/z 442, that corresponds to the

molecular formula $C_{27}H_{38}O_5$ [M]⁺ (HRMS). An absorbance for a hydroxyl group, a carboxyl group and a carbonyl group were observed at 3278, 1703, and 1607 cm⁻¹, respectively, in the IR spectrum. The ¹³C NMR spectrum (Table 1) displayed signals for a ketone at δ 211.8, a carboxyl group at δ 179.2, six methyls, six methylenes, five methines (two olefinic) and eight quaternary carbons (six olefinic). The ¹H NMR spectrum showed signals for two meta-coupled aromatic protons at δ 7.24 (d, J=2.8 Hz) and δ 6.84 (d, J=2.7 Hz), a singlet at δ 12.23 assigned to the phenolic proton, an aromatic methyl group at δ 2.22 (s, 3H). In the upfield region appear signals for five methyl groups at $\delta 0.82$ (3H, d, J=7.1 Hz), $\delta 1.06$ (3H, s), $\delta 1.57$ (3H, s), δ 1.69 (3H, s) and δ 1.73 (3H, s). Compound 7 has one carbon less than atomaric acid. Comparison of the spectroscopic data of 7 with those of atomaric acid indicates that there is a ketone at C-1 in compound 7 instead of the benzylic methylene group of atomaric acid³ and that there is a hydroxyl group at C-5' instead of the methoxy group of atomaric acid. This information was confirmed by HMBC correlations of protons H-6' and H₃-16 with C-1, and also by the MS peaks at m/z 151 and m/z 291, corresponding to fragments A and B (Scheme 1), respectively. Thus the structure of compound 7 was established.

Table 1. ¹H, ¹³C NMR data of compounds 2, 4–7 [500 MHz, δ (ppm), J (Hz), CDCl₃]

#	2		4		5		6		7	
	$\delta_{ m H}$	δ_{C}	$\delta_{ m H}$	δ_{C}	$\delta_{ m H}$	δ_{C}	$\delta_{ m H}$	δ_{C}	$\delta_{ m H}$	δ_{C}
1	a: 2.24 d (14.0) b: 2.85 d (14.0)	35.3	a: 2.25 d (14.2) b: 2.82 d (14.2)	35.2	a: 2.03 d (14.0) b: 2.85 d (13.9)	34.1	a: 2.36 d (13.8) b: 3.03 d (13.8)	35.9		211.8
2	0. 2.05 u (14.0)	40.6	0. 2.02 u (14.2)	40.6	0. 2.05 d (15.5)	40.7	0. 5.05 d (15.0)	40.8		54.6
3	1.71 m	35.3	1.69 m	35.2	1.68 m	35.1	1.76 m	35.7	2.42 m	39.2
4	α: 1.20 m	25.3	1.24 m	25.3	1.25 m	25.2	1.41 dt (4.3, 13.5)	25.5	1.37 m	25.8
_	β: 1.83 m		1.82 m		1.86 m		1.82 m		2.09 m	
5	1.51 m	36.5	1.51 m	36.5	1.52 m 1.41 m	36.2	α : 1.65 m	32.6	1.50 m 1.42 m	34.9
6		38.9	1.46 dd (3.6, 13.3)	38.9	1.41 m	38.9	β: 1.49 dt (4.2, 13.5)	42.9	1.42 m	39.2
7	1.38 dd (6.0, 12.0)	41.9	1.37 dd (6.0, 12.0)	41.9	1.31 dd (6.2, 12.0)	42.1	1.97 dd (2.3, 12.3)	42.9	2.25 m	39.2
8	1.73 m	22.4	1.54 m	22.4	1.69 m	22.4	α : 2.05 m	24.1	1.62 m	24.1
0	1.52 m	22.4	1.54 III	22.4	1.52 m	22.4	β: 1.69 m	24.1	1.02 m 1.25 t (7.1)	24.1
9	1.96 m	23.5	1.96 m	23.5	1.96 m	23.4		42.5	2.30 m	25.7
/	2.38 m	20.0	2.38 m	20.0	2.38 m	25.1	β: 2.40 m	12.5	2.20 m	20.7
10	2100 111	132.9	2100 111	132.8	2.000 m	132.5	p: 2:10 m	211.8	2120 111	132.4
11	2.32 m	53.1	2.31 m	53.0	2.26 m	52.9	2.21 d (10.4)	63.6	2.35 m	54.3
12	1.81 m	24.9	1.82 m	24.9	1.78 m	24.8	1.92 m	17.5	1.80 m	24.8
	1.61 m		1.63 m		1.52 m		1.64 m		1.71 m	
13	2.28 m	33.0	2.32 m	32.9	2.30 m	32.5	2.11 quintuplet (8.0) 2.47 ddd (2.5, 8.1, 10.6)	33.0	2.30 m 2.39 m	32.9
14		180.2		180.3		178.4	2.17 uuu (2.5, 6.1, 10.6)	174.3	2.37 m	179.2
15	1.15 d (7.0)	15.7	1.12 d (6.9)	15.8	0.99 d (6.0)	15.6	1.21 d (6.9)	16.1	0.82 d (7.1)	16.8
16	0.93 s	20.7	0.93 s	20.4	0.90 s	21.7	0.91 s	20.1	1.57 s	23.3
17	1.01 s	17.9	1.02 s	17.9	1.02 s	17.6	0.80 s	16.9	1.06 s	17.5
18		123.4		123.5		123.7				124.2
19	1.67 ^a s	20.3	1.68 ^a s	20.4	1.67 ^a s	20.4			1.73 ^a s	21.3
20	1.66 ^a s	20.3	1.66 ^a s	20.8	1.65 ^a s	20.7			1.69 ^a s	21.4
1'		127.0		126.6		147.7		126.9		117.9
2'		146.8		150.4		188.3		146.8		156.2
3'		124.1		123.9		146.2		123.5		129.7
4′	6.53 d (2.5)	113.2	6.70 d (2.6)	121.0	6.54 s	132.8	6.55 d (2.9)	113.3	6.84 d (2.7)	124.4
5'		152.5		143.1		187.6		152.6		145.7
6'	6.68 d (3.0)	114.4	6.79 d (2.6)	121.3	6.63 s	133.9	6.70 d (2.9)	114.7	7.24 d (2.8)	112.5
7'	2.20 s	16.8	2.20 s	16.5	2. 05 s	16.4	2.23 s	16.7	2.22 s	16.6
OMe-5'	3.71 s	55.5	2.26	01.0			3.73 s	55.5		
COOMe			2.26 s	21.3						
COOMe OH-2'				170.2			4.30 s		12.23 s	
06-2							4.50 8		12.23 8	

^a Interchangeable signals.

Scheme 1. Selected MS fragments of 7.

The relative stereochemistry of **7** was established by 2D NOESY experiments. A NOE effect between Me-16 and Me-17 was observed. In addition, Me-17 has NOE with H_2 -12, which indicates that the side chain must be on the same face of the molecule as the methyl groups Me-16 and

Me-17. The NOE observed between Me-16 and H-3 and between H-7 and Me-15 implies that Me-15 is on the opposite face of the molecule relative to Me-16 and Me-17 and that the ring fusion C-6/C-7 must be trans, thus establishing that the relative stereochemistry of compound 7 is the same as that of compounds **6**, with Me-15 in α disposition.

By comparison of the NMR data of the atoms around the C-3 chiral center of atomaric acid 2. 5'a-desmethyl-5'acetylatomaric acid 4 and stypoquinonic acid 5, with those of compound 6 it can be deduced that all seven compounds must have the same relative stereochemistry (see Table 1). This was confirmed by 2D NOESY experiments of 2, 4 and 5. A careful study of the 2D NOESY experiments for these compounds, represented in Figure 1, indicated that the same NOE effects are observed for these compounds as for compound 7 with the exception of the NOE between the H-3 signal and Me-16 which is not very clear due to the overlapping of the H-3 signal, but a NOE effect can be observed between Me-15 and Ha-1 which implies that Me-15 is on the opposite face of the molecule relative to Me-16 and M-17, allowing us to propose that the C-3 stereochemistry of the previously described compounds should be changed to give compounds 2, 4 and 5.

These results established that all described naturally occurring metabolites related to the atomaric acid skeleton possess the same configuration at C-3. This stereochemistry is coincident with that of other related compounds based on the stypodiol skeleton.^{9–11}

3. Experimental

3.1. General procedures

Optical rotations were measured on a Perkin-Elmer model 241 polarimeter using a Na lamp at 25°C. IR spectra were obtained with a Perkin-Elmer 1650/FTIR spectrometer in CHCl₃ solutions. EIMS and HRMS spectra were taken on a Micromass Autospec spectrometer. ¹H NMR and ¹³C NMR, HMQC, HMBC and COSY spectra were measured employing a Bruker AMX 500 instrument operating at 500 MHz for ¹H NMR and at 125 MHz for ¹³C NMR. Two-dimensional NMR spectra were obtained with the standard Bruker software. HPLC separations were performed with a Hewlett Packard 1050 (Jaigel-sil semipreparative column 10 µm 20×250 mm) with hexane-EtOAc mixtures. The gel filtration column (Sephadex LH-20) used hexane-MeOH-CH₂Cl₂ (3:1:1) as solvent. Merck Si gels 7734 and 7729 were used in column chromatography. The spray reagent for TLC was H₂SO₄-H₂O-AcOH (1:4:20).

3.2. Plant material

S. zonale was collected off the coast of Tenerife (Canary Islands, Spain) using SCUBA diving. A voucher specimen has been deposited at the Department of Marine Biology, Universidad de La Laguna, Tenerife, Canary Islands, Spain (Deposit number: StyppZo-01-8).

2062

3.3. Extraction and isolation

Air-dried *S. zonale* (320 g, dry wt) was extracted with dichloromethane at room temperature. The extract was concentrated to give a black residue (8.8 g) and fractionated by flash chromatography on Si gel. Fraction 5, eluted with hexane–EtOAc (8:2) (2.2 g), gave atomaric acid **2** (87 mg), 5'a-desmethyl-5'-acetylatomaric acid **4** (20.1 mg) and stypoquinonic acid **5** (2 mg). Fraction 7, eluted with hexane–EtOAc (1:1) (2.1 g), gave compound **7** (3.7 mg) after gel filtration followed by purification by HPLC (Jaigelsil column 20 H 250 mm, flow 4.5 ml/min, hexane–EtOAc (1:1)).

3.3.1. Compound 7. Yellow oil; $[\alpha]_{D}^{25} = +145.9^{\circ}$ (*c* 0.18, CHCl₃); IR (film) ν_{max} 3278, 2932, 1703, 1607, 1421, 1286, 1181 cm⁻¹; ¹H and ¹³C NMR, see Table 1; EIMS *m/z* 442 [M]⁺ (19), 291 [M–C₈H₇O₃]⁺ (43), 163 (32), 151 (100), 95 (19), 69 (21); HREIMS [M]⁺ 442.269 (calcd for C₂₇H₃₈O₅, 442.271), [M–C₈H₇O₃]⁺ 291.227 (calcd for C₁₉H₃₁O₂, 291.232).

Acknowledgements

This work was supported by the Ministerio de Ciencia y Tecnología PPQ2002-02494, FEDER and Dirección General de Universidades del Gobierno de Canarias PI2002/044. We are grateful to Professor J. Afonso-Carrillo (University of La Laguna) for the taxonomic classification of the alga. E. D. acknowledges a fellowship (FPI) from the CICYT. M. C. and A. R. D.- M. acknowledge an I3P grant from the CSIC.

References

- González, A. G.; Darias, J.; Martín, J. D. *Tetrahedron Lett.* 1971, 29, 2729–2732.
- González, A. G.; Darias, J.; Martín, J. D.; Pascual, C. Tetrahedron 1973, 29, 1605–1609.
- González, A. G.; Darias, J.; Martín, J. D.; Norte, M. Tetrahedron Lett. 1974, 45, 3951–3954.
- González, A. G.; Martín, J. D.; Perez, C.; Rovirosa, J.; Tagle, B.; Clardy, J. *Chem. Lett.* **1984**, 1649–1652.
- González, A. G.; Alvarez, M. A.; Martín, J. D.; Norte, M.; Perez, C.; Rovirosa, J. *Tetrahedron* **1982**, *38*, 719–728.
- Gerwick, W. H.; Fenical, W.; Norris, J. N. *Phytochemistry* 1985, 24, 1279–1283.
- Wessels, M.; Köning, G. M.; Wright, A. D. J. Nat. Prod. 1999, 62, 927–930.
- Dorta, E.; Cueto, M.; Brito, I.; Darias, J. Nat. Prod. 2002, 65, 1727–1730.
- 9. Gerwick, W. H.; Fenical, W. Tetrahedron Lett. 1979, 2, 145–148.
- 10. Gerwick, W. H.; Fenical, W. J. Org. Chem. 1981, 46, 22-27.
- 11. Rovirosa, J.; Darias, J.; Quezada, E.; San-Martín, A. *Bol. Soc. Chil. Quím.* **1994**, *39*, 219–221.